设为首页  加入收藏   联系方式
真空炉
您现在的位置:首页 > 新闻动态
压电陶瓷的发展及应用
  • 时间:2019-04-25 13:26:19    点击:

压电陶瓷是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体,并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,是一种能将机械能和电能互相转换的功能陶瓷材料。

由于具有较好的力学性能和稳定的压电性能,压电陶瓷作为一种重要的力、热、电、光敏感功能材料,已经在传感器、超声换能器、微位移器和其它电子元器件等方面得到了广泛的应用。

  随着材料工艺的不断研究和改良,以及电子、信息、航空航天等高科技领域日新月异的发展,作为含高智能新型材料的压电陶瓷的生产技术和应用开发是人们关注的热门课题。

  压电陶瓷压电陶瓷是一类具有压电特性的电子陶瓷材料,与典型的不包含铁电成分的压电石英晶体的主要区别是:构成其主要成分的晶相都是具有铁电性的晶粒。

 由于陶瓷是晶粒随机取向的多晶聚集体,因此其中各个铁电晶粒的自发极化矢量也是混乱取向的. 为了使陶瓷能表现出宏观的压电特性,就必须在压电陶瓷烧成并于端面被复电极之后,将其置于强直流电场下进行极化处理,以使原来混乱取向的各自发极化矢量沿电场方向择优取向经过极化处理后的压电陶瓷,在电场取消之后,会保留一定的宏观剩余极化强度,从而使陶瓷具有了一定的压电性质.

发展历史

1880年,居里兄弟首先发现电气石的压电效应,从此开始了压电学的历史。

1881年,居里兄弟实验验证了逆压电效应,给出石英相同的正逆压电常数。

1894年,Voigt指出,仅无对称中心的二十种点群的晶体才有可能具有压电效应,石英是压电晶体的一种代表,它被取得应用。第一次世界大战,居里的继承人郎之万,最先利用石英的压电效应,制成了水下超声探测器,用于探测潜水艇,从而揭开了压电应用史篇章。

 压电材料及其应用取得划时代的进展应归咎于第二次世界大战中发现了BaTiO3陶瓷,1947年,美国Roberts在BaTiO3陶瓷上,施加高压进行极化处理,获得了压电陶瓷的电压性,随后,日本积极开展利用BaTiO3压电陶瓷制作超声换能器、高频换能器、压力传感器、滤波器、谐振器等各种压电器件的应用研究,这种研究一直进行到50年代中期。

 1955年,美国B.Jaffe等人发现了比BaTiO3压电性更优越的PZT压电陶瓷,促使压电器件的应用研究又大大地向前推进了一大步。BaTiO3时代难于实用化的一些用途,特别是压电陶瓷滤波器和谐振器,随着PZT的问世,而迅速地实用化,应用声表面波(SAW)的滤波器、延迟线和振荡器等SAW器件,在七十年代后期也取得了实用化。

 80年代后期至今,人们研制出驰豫铁电体陶瓷材料,在此基础上有成功研制出驰豫铁电体单晶材料,为三维超声波成像奠定了基础。目前,人们将纳米技术应用到压电材料的制作工艺上已取得新的突破。

目前,世界各国正在大力研制开发无铅压电陶瓷,以保护环境和追求健康...

应用

 自1942年第一个陶瓷型压电材料钛酸钡诞生以来,作为压电陶瓷的应用产品,已遍及人们生活的各个方面。压电材料作为机电耦合的纽带,其应用大致可分为两大方面:以压电谐振器为代表的压电陶瓷频率控制器件方面的应用和作为机械能与电能相互转换的准静态的应用。

 近年来随着纳米技术的飞速发展,纳米陶瓷逐步受到人们的关注。纳米粉体经成型和烧结,形成致密、均匀的块体纳米陶瓷,材料的韧性、强度和超塑性大幅提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响。

 通过精选材料组成体系和添加纳米级颗粒、晶须、晶片纤维等加以改性,可以获得高性能和低温烧结兼优的纳米压电陶瓷材料。通过控制纳米晶粒的生长可获得量子限域效应,以及性能奇异的铁电体,以提高压电热解材料机电转换和热释性能。近年迅速发展的各类压电变压器、压电驱动器、大功率超声焊接技术、压电式振动给料器、超声CVD新工艺和核电站相配套的大功率超声工程都是纳米陶瓷在压电方面的应用。

 宜兴市邦世达炉业有限公司专业提供设计制造压电陶瓷烧结炉,回转窑,辊道窑等!欢迎来电咨询